n-Color Odd Self-Inverse Compositions

نویسنده

  • Yu-hong Guo
چکیده

An n-color odd self-inverse composition is an n-color self-inverse composition with odd parts. In this paper, we obtain generating functions, explicit formulas, and recurrence formulas for n-color odd self-inverse compositions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

n-Colour self-inverse compositions

Abstract. MacMahon’s definition of self-inverse composition is extended to n-colour self-inverse composition. This introduces four new sequences which satisfy the same recurrence relation with different initial conditions like the famous Fibonacci and Lucas sequences. For these new sequences explicit formulas, recurrence relations, generating functions and a summation formula are obtained. Two ...

متن کامل

Some n-Color Compositions

In the classical theory of partitions, compositions were first defined by MacMahon [1] as ordered partitions. For example, there are 5 partitions and 8 compositions of 4. The partitions are 4, 31, 22, 21, 1 and the compositions are 4, 31, 13, 22, 21, 121, 12, 1. Agarwal and Andrews [2] defined an n-color partition as a partition in which a part of size n can come in n different colors. They den...

متن کامل

Compositions, Partitions, and Fibonacci Numbers

A bijective proof is given for the following theorem: the number of compositions of n into odd parts equals the number of compositions of n + 1 into parts greater than one. Some commentary about the history of partitions and compositions is provided.

متن کامل

Explicit Construction of Self-Dual Integral Normal Bases for the Square-Root of the Inverse Different

Let K be a finite extension of Qp, let L/K be a finite abelian Galois extension of odd degree and let OL be the valuation ring of L. We define AL/K to be the unique fractional OL-ideal with square equal to the inverse different of L/K. For p an odd prime and L/Qp contained in certain cyclotomic extensions, Erez has described integral normal bases for AL/Qp that are self-dual with respect to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014